NTIT 國立臺中技術學院 系所組:資訊科技與應用研究所

與應用研究所 准考證號碼: 科目:數學

95 學年度碩士班考試入學暨碩士在職專班試題

注意事項:

1.本科目考試時間共90分鐘。

2.答案卷書寫題號依序作答,不必抄題。

3.答案卷不可書寫任何可辨別個人姓名或特殊標記,違反者以零分計算。

4.請於試題紙上填寫准考證號,繳卷時「試題」、「答案卷」一倂繳回。

臺中技術學院 95 學年度資訊科技與應用研究所數學科目考題

1. Suppose that the following data represent the invested amount(\$) in new-product development by the manufacturing company over five-year period.

Year x	1	2	3	4	5
Investment, y	1	1	4	4	6

- (1) Find the least squares line for estimating invested amount in new-product development by the company as a function of time.
- (2) Predict the company's investment in new-product development in year x = 7.
- (3) What is the estimate of population variance?
- (4) Check the adequacy of the regression model?

Hint: $t_{0.025}(4)=2.77$

 $t_{0.05}(4)=2.13$

 $t_{0.025}(3)=3.18$

 $t_{0.05}(3)=2.35$

2. Suppose the 'Leisure Goods Price Index' of three regions(Taipei, Taichung and Kaohsing) are given in the following table:

region	Taipei	Taichung	Kaohsiung	
87	105.2	106	105.7	
88	108.4	110.7	111	
89	113.9	116.9	117.2	

Please answer the following questions:

- (1) Is there a significant difference for 'Leisure Goods Price Index' among regions? why or why not?
- (2) Is there a significant difference for 'Leisure Goods Price Index' among years? why or why not?

Hint: $F_{0.05}(3,4)=6.59$

 $F_{0.05}(2,4)=6.94$

 $F_{0.05}(3,11)=3.59$

 $F_{0.05}(2,11)=3.98$

3. To know if products' volume is significantly influenced by machine types. A completely randomized design is performed and data is collected.

	Mach	Machine type		
1	2	- 3	4	
5	4	6	3	
6	9	3	5	
4	7	4	2	
2	6	2	7	

- (1). To test if the 4 mean volumes are all equal? $\alpha = 0.01$
- (2). To analysis this problem, what assumptions are required.
- (3). What is the estimate of population variance?

Hint: $F_{0.01}(3,15)=5.42$

 $F_{0.01}(4,12)=5.41$

 $F_{0.01}(3,12)=5.95$

 $F_{0.01}(4,15)=4.89$

4. An industrial engineer is interested in the outputs of two assembly lines. Independent tests for the two lines show the following results:

line A	line B
n _A =10	$n_{\rm B}=16$
$\bar{x}_{A}=14.5$	$\bar{x}_{B} = 11.3$
S _A =0.8	$S_{\rm B} = 0.7$

- (1). Construct 95% confidence interval on the true variances for line A and line B respectively.
- (2). Construct 95% confidence interval on the true means for line A and line B respectively.
- (3). Test if variances for line A and line B are equal $(\alpha = .05)$, and Using the result to test if mean outputs for line A and line B are equal $(\alpha = .05)$.

Hint:
$$\chi^2_{0.975}(10) = 20.48$$
 $\chi^2_{0.975}(9) = 19.02$ $\chi^2_{0.95}(10) = 18.31$ $\chi^2_{0.95}(9) = 16.92$ $\chi^2_{0.025}(10) = 3.25$ $\chi^2_{0.025}(9) = 2.7$ $\chi^2_{0.05}(10) = 3.94$ $\chi^2_{0.05}(9) = 3.33$ $\chi^2_{0.975}(16) = 28.85$ $\chi^2_{0.975}(15) = 27.49$ $\chi^2_{0.95}(16) = 26.30$ $\chi^2_{0.95}(15) = 25$ $\chi^2_{0.025}(16) = 6.91$ $\chi^2_{0.025}(15) = 6.26$ $\chi^2_{0.05}(16) = 7.96$ $\chi^2_{0.05}(15) = 7.26$ $t_{0.05}(10) = 1.81$ $t_{0.025}(10) = 2.23$ $t_{0.05}(9) = 1.83$ $t_{0.025}(9) = 2.26$ $t_{0.05}(16) = 1.75$ $t_{0.025}(16) = 2.12$ $t_{0.05}(15) = 1.75$ $t_{0.025}(15) = 2.13$ $t_{0.025}(24) = 2.06$ $t_{0.05}(24) = 1.71$

- 5. Determine the number of positive integer solutions for $x_1 + x_2 + x_3 + x_4 + x_5 < 21$, where $x_1 \ge 1$.
- 6. Use mathematical induction to prove that $2^n \times 2^n 1$ is divisible by 3 for $n \in \mathbb{N}$.
- 7. Give an example to illustrate the Kruskal's algorithm for the minimum spanning tree.
- 8. Find parametric equations of the line through $p_0(3,2,4)$ parallel to $\mathbf{v} = \begin{bmatrix} -2\\5\\1 \end{bmatrix}$.
- 9. Solve the following linear systems by Cramer's rule:

$$-2x_1 + 3x_2 - x_3 = 1$$
$$x_1 + 2x_2 - x_3 = 4$$
$$-2x_1 - x_2 + x_3 = -3$$

10. Let
$$A = \begin{bmatrix} 3 & -5 \\ 1 & -3 \end{bmatrix}$$
. Compute A^9 . (Hint: Find a matrix P such that $P^{-1}AP$ is a diagonal matrix D and show that $A^9 = PD^9P^{-1}$.)

2