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WLD: A Robust Local Image Descriptor

Jie Chen, Member, IEEE, Shiguang Shan, Member, IEEE, Chu He, Guoying Zhao,
Matti Pietikéinen, Senior Member, IEEE, Xilin Chen, Senior Member, IEEE, and
Wen Gao, Fellow, IEEE

Abstract—Inspired by Weber's Law, this paper proposes a simple, yet very powertul and robust focal descriptor, called the Weber
Local Descriptor (WLD}. It is based on the fact that human perception of a pattemn depends net only on the change of a stimulus (such
as seund, lighting) but aisc on the original intensity of the stimulus. Specifically, WLD consists of two components: differensial excitation
and orientation. The differential excitation componaent is & function of the ratio between two terms: One is the relative intensity
differences of a current pixet against its neighbors, the other is the intensity of the currant pixel. The crientation component is the
gradient orientation of the current pixel. For a given image, we use the two components to construct a concatenated WED histogram.
Experimental resilts on the Brodatz and KTH-TIPS2-a texture databases show that WLD impressively outperforms the other widely
used descriptars {e.g., Gabor and SIFT). In addition, experimantal resuits on human face detection also show a promising petiormance
comparable to the best known results on the MIT+CMU frontal face test set, the AR face data set, and the CMU profile test sat.

Index Terms—Pattern recognition, Weber law, local descriptor, texture, face detection.

1 INTRODUCTION

ECENTLY, thete has been much interest in object and view

matching using local invariant features [27), classifica-
tion of textured regions using microtextons {34], and in face
detection using local features [47], There are several studies
to evaluate the performance of these methods, such as [30],
[31], [33], [38]. These methods can be divided into two
classes: One is a sparse descriptor which first detects the
interest points in a given image and then samples a local
patch and describes its invariant features [30], [31]; the other
is a dense descriptor which extracts local features pixel by
pixel over the input image [33], [38].

For the sparse descriptors, a typical one is the scale-
invariant feature transform (SIFT), intreduced by Lowe [27].
It performs best in the context of matching and recognition
due to its invariance to scaling and rotations §31]. Several
attempts to improve the SIFT descriptor have been reported
in the literature. Ke and Sukthankar developed the PCA-
SIFT descriptor, which represents local appearance by
principal components of the normalized gradient field
[23]. Mikolajezyk and Schmid modified the SIFT descriptor
by changing the gradient location orientation grid, as well
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as the quantization parameters of the histograms [31]. Dalal
and Triggs proposed a “histogram of oriented gradients”
{HOG) [12]. Lazebnik et al. proposed a rotation invariant
descriptor called the Rotation Invariant Feature Transform
{RIFT) [24}. Bay et al. proposed an efficient implementation
of SIFT by applying the integral image to compute image
derivatives, and quantifying the gradient orientations in a
small number of histogram bins [4]. Winder and Brown
learned an optimal parameter setting on a large fraining set
to maximize the matching performance [48]. Mikolajezyk
and Matas developed the optimal linear projection to
improve the matching quality and speed of SIFT [32].
Likewise, in order to improve the efficiency of the local
descriptor, Tola et al. replaced the weighted sum rule used
in SIFT by sum of convolutions [44]. In addition, Cheng
et al. proposed the use of multiple support regions of
different sizes surrounding a point of interest [11].

Among the most popular dense deseriptors are the Gabor
wavelet [28] and local binary pattern (LBP) [34]. The Gabor
representation has been shown to be optimal in the sense of
minimizing the joint two-dimensional uncertainty in space
and frequency [28]. The Gabor filters can be considered as
orientation and scale tunable edge and line (bar) detectors,
and the statistics of these microfeatures in a given region are
often used to characterize the underlying texture informa-
tion.. The Gabor- wavelet has been widely used in image
analysis applications, including texture classification and
segmentation, image registration, motion tracking [28], and
face recognition [53]. Another important dense local de-
scriptor is LBP, which has gained increasing attention due to
its simplicity and excellent performance in various texture
and face image analysis tasks [34]. Many variants of LBP
have been recently proposed and have achieved consider-
able success in various tasks. Ahonen et al. exploited the LBP
for face recognition [2]. Rodriguez and Marcel proposed
adapted LBP histograms for face authentication [40]. Tan and
Triggs changed the thresholding means for face recognition
under difficult lighting conditions [43]. Zhao and Pietikiinen
proposed the local binary pattern on three orthogonal planes,
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and used it for dynamic texture recognition [52]. Zhang et al.
proposed the local Gabor binary pattern for face representa-
tion and recognition [53]. In addition, some researchers use
these descriptors in a crossway. For example, Fei-Fei and
Perona used SIFT in a dense sampling way [14] and Heikkild
et al. exploit LBP in a sparse way [18].

In this paper, we propose a simple, yet very powerful and
robust local descriptor. This descriptor consists of two
components: differential excitation and orientation. 1t is
inspired by Weber’s Law, which is a psychological law [211.
It states that the change of a stimulus (such as sound, lighting)
that will be just noticeable is a constant ratio of the original
stimulus. When the change is smaller than this constant ratio
of the original stimulus, a human being would recognize it as
background neise rather than a valid signal. Motivated by
this point, for a given pixel, the differential excitation
component of the proposed Weber Local Descriptor (WLD)
is computed based on the ratio between the two terms: One is
the relative intensity differences of a current pixel against its
neighbors (e.g., 3 x 3 square region); the other is the intensity
of the current pixel. With the differential excitation compo-
nent, we attemnpt to extract the local salient patterns in the
input image. In addition, we also compute the gradient
orientation of the current pixel, That is, for each pixel of the
input image, we compute two components of the WLD
feature (i.e., differential excitation and gradient orientation).
By combining the WLD feature per pixel, we represent an
inputimage (or image region) witha histogram, which we call
a WLD histogram hereinafter. In our case, the WLD feature is
computed pixetwise. Thus, WLD is a dense descriptor.

The proposed WLD descriptor employs the advantages
of SIFT in computing the histogram using the gradient and
its orientation, and those of LBP in computational efficiency
and smaller support regions. But WLD distinctly differs
from SIFT and LBP. As mentioned above, the SIFT
descriptor is a 3D histogram of gradient locations and
crientations in which two dimensions correspond to image
spatial coordinates and the additional dimension to the
image gradient orientation. As a sparse descriptor, SIFT
computes only for the regions of interest {located around
detected interest points) that have usually already been
normalized with respect to scale and rotation. Texture
classification with SIFT is performed using information in
these sparsely located interest regions, as in [13}. WLD, on
the contrary, is a dense descriptor computed for every pixel
and depends on both the local intensity variation and the
magnitude of the center pixel’s intensity. Texture classifica-
tion with WLD is carried out using 2D WLD histograms.
Since WLD is computed arcund a relatively small square
region (e.g., 3 x3), while SIFT is computed around a
relatively large region (e.g., 16 x 16) [27], [11], the descrip-
tion granularity of WLD is much smaller than that of SIFT.
That is to say, WLD is computed in a finer granularity than
SIFT. The smaller size of the support regions for WLD
makes it capture more local salient patterns. Furthermore,
WLD can be easily extended to extract the multigranularity
features by multiscale analysis techniques, as presented in
Section 2.4.

With regard to the LBP descriptor, it represents an input
image by building statistics on the local micropattern
variations. These local patterns might correspond to bright/
dark spots, edges and flat areas, ete. In contrast, WLD
first computes the salient micropatterns (i.e., differential
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excitation), and then builds statistics on these salient patterns
along with the gradient orientation of the current point,

Several researchers have used Weber’s Law in computer
vision, but not, as in this study, as a descriptor. Bruni and
Vitulano used this law for scratch detection on digital film
materials [8]. Phiasai et al. employed a Weber ratio to
control the strength of 2 watermark [37].

This paper is an extension of our previous work [10]. In this
current paper, we further extend the original WLD to a
multiscale version in order to extract multigranularity
features. We also provide amore in-depth theoretical analysis
and more extensive evaluations on WLD. The rest of this
paper is organized as follows: In Section 2, we present the
details of the proposed local descriptor WLD and compare it
with other existing methods. In Sections 3 and 4, we carry out
the experiments dealing with the applications of WLD in
texture classification and face detection. In Section 5, we
discuss some issues about the proposed descriptor. Section 6
concludes the paper.

2 WLD FOR IMAGE REPRESENTATION

In this section, we review Weber's Law and then detail
the proposed WLD. Subsequently, we develop its multi-
scale analysis. In addition, we compare WLD with some
existing descriptors.

2,1 Weber's Law

Ernst Weber, an experimental psychologist in the
19th century, observed that the ratio of the increment
threshold to the background intensity is a constant [21]. This
relationship, known since as Weber’s Law, can be expressed as:

AT

where AT represents the increment threshold (just noticeable
difference for discrimination), I represents the initial stimu-
lus intensity, and & signifies that the proportion on the left
side of the equation remains constant despite variations in the
I term. The fraction AI/I is known as the Weber fraction.

Weber’s Law, more simply stated, says that the size of a
fust noticenble difference (ie., AT} is a constant proportion of
the original stimulus value. So, for example, in a noisy
environment one must shout to be heard while a whisper
works in a quiet room.

22 WLD

In this part, we describe the two components of WLD:
differential excitation (£) and orientation (8). After that, we
present how to compute a WLD histogram for an input
image (or image region).

2.2.1 Differential Excitation

We use the intensity differences between its neighbors
and a current pixel as the changes of the current pixel. By
this means, we hope to find the salient variations within
an image to simulate the pattern perception of human
beings. Specifically, a differential excitation Hz,) of a
current pixel z, is computed as illustrated in Fig. 1. We first
calculate the differences between its neighbors and the
center point using the filter fi,:
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Fig. 1. llustration of the computation of the WLD deseriptor.
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where z; (i =0,1,...p~ 1} denotes the ith neighbors of z,
and p is the number of neighbors. Following hints in
Weber's Law, we then compute the ratio of the differences
to the intensity of the current point by combining the
outputs of the two filters fip and fp; (whose output 10! is the
original image in fact):

Grariolze) = v /U (3)
We then employ the arctangent function on Gyeus(-):
Garetan[Gratin(2c)] = arctan]Gronio{x.)]. (4)
Combining (2), (3), and (4), we have:

0
Gﬂ.rctan[Grafio(zc)] = ')‘2 = arctan [%
s

~ arctan [g: (“—;ﬁ)} (5)

So, the differential excitation of the current pixel &(x.) is
computed as:

£(z.) = arctan [,_,V%;] = arctan l:f (@L;cmc)] . (6)
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Fig. 2. Comparison of the arctangent function and some sigmoid
functions. Note that the output of arctan(.) is in radian measure.

Note that £(x) may take a minus value if the neighbor
intensities are smaller than that of the current pixel. By this
means, we attempt to preserve more discriminating
information in comparison to using the absolute value of
§(z). Intuitively, if £{x) is positive, it simulates the case that
the surroundings are lighter than the current pixel. In
contrast, if £{z) is negative, it simulates the case that the
surroundings are darker than the current pixel.

Discussion on using arctangent function. As shown in
(4), we use the arctangent function Garetan() to compute
&{z.). We plot the curve of this function in Fig. 2. Here, we
use this function since it can limit the output to prevent it
from increasing or decreasing too quickly when the input
becomes larger or smaller.

One optional filter is a logarithm function, which
matches a human being’s perception well. However, it

«cannot be used here since many outputs of (2) are negative.

Another optional filter is a sigmoid function:

1—e

sigmoid((3z) = T i (7

where 3> 0. It is a typical neuronal nonlinear transfer
function and is widely used in artificial neural networks [3].
Both arctangent and sigmoid functions have similar curves,
as shown in Fig. 2, especially when § = 2. In our case, we
use the former for simplicity.

As shown in Fig. 3, we plot an average histogram of the
differential excitations on 2,000 texture images. One can
find that there are more frequencies at the two sides of the
average histogram (e.g., [—7/2,—n/3) and [[r/3,n/2]). K
results from two factors: One is the delimitation effect of the

26 3wl

wirf2 -!\73 -zl 0
Differential &xcitation

Fig. 3. The average histogram of the differential excitations on 2,000
texture images.

Authorized licensed use limited to: National Chung Hsing University. Downloaded on August 18,2010 at 07:08:03 UTC from IEEE Xplore, Restrictions apply.



1708

arctangent function, as shown in Fig. 2; the other is the
approach used in computing the differential excitation £ of a
pixel {i.e., a sum of the difference ratios of p neighbors
against a central pixel), as shown in (6). However, it is
valuable for a classification task. For more details, please
refer to Sections 2.2.4, 3, and 4.

2.2.2 Orientation
As shown in Fig. 1, the orientation component of WLD is
the gradient orientation as in [27], which is computed as:

1 v
B{z,) = v; = arctan (uﬁ)’ {8)
3
where 1) and #}! are the outputs of the filters f; and fi1:

10 _ o
v, =izg—mzy and vl =z7 - a3, (9)

For simplicity, # is further quantized into T dominant
orientations. Before the quantization, we perform the map-
ping f: 8w &

# = arctan2{w,", ¥!") + 7, and
6, >0 and % >0,
w48, v1 >0 and v <0,
f—m <0 and v <o,
8. ' <0 and p¥ >0,

10
arctan2 (v} Vi”) = (10)

where 6 € [~7/2,7/2] and # € [0, 2x]. This mapping con-
siders the value of 8, computed using (8), and the sign of 40
and v!'. The quantization function is then as follows:

.2t : 74 1
S’Dg:fq(é‘ﬁ:?w,andt:mod({m+§J,T), {11)

Forexample, as shown in Fig. 1,if T = 8, these T dominant
orientations are ®; = {ix)/4,{t=0,1,..., T — 1). In other
words, those orientations located within the interval [&; —
/T, & +7/T] are quantized to &,.

2.2.3 WLD Histogram

The idea of representing an image by histogram of gradient
and orientations has been used in biologically plausible
vision systems and in object detection and recognition [1], [5],
£10], [32]. Motivated by this idea, as shown in Fig. 1, we first
compute each pixel’s differential excitation (£;) using (6), and
orientation {®;} using (11). As shown in Hg. 2, we then
compute the 2D histogram {WLD{(¢;,®,)},j =0,1,...N — 1,
t=0,1,...,T—1, N is the dimensionality of an image and T
is the number of the dominant orientations, as mentioned in
Section 2.2.2. Note that the size of this 2D histogramis T x C,
where C is the number of cells in each crientation (for more
details of this parameiers, please refer to the following part of
this section). In other words, in this 2D histogram, each
column corresponds to a dominant orientation ®,, and each
row corresponds to a differential excitation histogram with
C bins. Thus, the intensity of each cell corresponds to the
frequencies of a certain differential excitation interval on a
dominant orientation.

To obtain a more discriminative descriptor, the 2D
histogram {WLD{¢;, ®,)} is further encoded into a 1D
histogram H. Specifically, given the 2D histogram

Authorized licensed use limited to: National Chung Hsing University. Downloaded on August 18,2010 at 07:08:03 UTC from IEEE Xpl
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{WLD(&;,9,)} of an image, as shown in Fig. 4a, we project
each column of the 21> histogram to form a 1D histogram
H{t) (t=0,1,...,7 ~ 1), That is, we regroup the differen-
tial excitations &; into T subhistograms H(i), each sub-
histogram H(t) corresponding to a dominant orientation
(i.e, ). Subsequently, each subhistogram H(t) is evenly
divided into M segments, ie., Hpe (m=0,1,...,M -1,
and in our implementation we set M =6). All of these
subhistogram segments H,,; form a histogram matrix. Each
column corresponds to a dominant orientation, and each
row corresponds to a differential excitation segment (i.e.,
having similar differential excitation values). The histogram
matrix is then reorganized as a 1D histogram H. Specifi-
cally, each vow of the histogram matrix is concatenated as a
subhistogram Hp (ie., Hp={Hn:},t=0,1,...,7-1).
Concatenating the resulting M subhistograms, we have
the 1D histogran: # = {H,}, m=0,1,..., M — 1.

Note that, after each subhistogram, H(t) is evenly divided
into M segments, the range of differential excitations & (ie.,
I =[-7/2,7/2]) is also evenly divided into M intervals 1,
(m=0,1...., M —1). Thus, for each interval I, we have
I = [Dm2, Thn ). Here, the lower bound #m, = (m/M - /2y
and the upper bound 7, = [(m + 1)/ M = 1/2}r. For exam-
ple, lp = [—n/2, -7 /3.

Furthermore, as shown in Fig. 4b, each subhistogram
segment H,,, is composed of § bins, i.e,

Hrp =A{hmpst,s=0,1,..., 81,

Herein, by, s is computed as:

_ ==, (g = |1
g = ;5(83 == 5), (SJ a [(nm,u - Wm.!)/s+ ZJ)!
12)

where the subscripts m, ¢ of Rmg,s are computed as follows:
m i3 determined according to the interval to which the
value of §; belongs, ie., & € Iy, t is the index of quantized
orientation, i.e., &, = fo(8), and ¢ is computed as in (11);
ane 6(-) is the Kronecker delta function defined as follows:

B(X) = {é

Intuitively, by, ;s means the munber of the pixels whose
differential excitations £; belong to the same interval 1., and
orientations & are quantized to the same dominant
orientation ®; and that the computed index 5; is equal to
8. Meanwhile, {1y — m1)/S is the width of each bin, and

1
(e — )/ S (&~ Tnd)

is linear mapping, used to map the differential excitation to
its corresponding bin since the values of ¢; are of real. Note
that, as shown in Fig. 4a, for the number of the cells in each
column of the 2D histogram {WLD(¢;,&,)}, we have
C=MxS§.

We segment the range of £ into several intervals due to the
fact that different intervals correspond to the different
variances in a given image. For example, given two pixels
B and P, if their differential excitations & < Iy and £ € b, we
say that the intensity variance around P, is larger than that of

X is true,

otherwise. (13)

ore. Reslrictions apply.
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concatenated by T subhistogram segments H,. (¢t = 0,1,.

.. T —1}. Meanwhile, for each calumn of the histogram matrix, all of the M sagments H,,.,

{m=0,1,... M — 1) have the same dominant orientation ®,. In contrast, for sach row of the histogram matrix, the differential excitations &; of each
subhistogram segment Hq, {t =0,1....T — 1} belong to the same interval . (b) A subhistogram segment H,, ,. Note that if ¢ is fixed, for any m Or s,

the dominant ortantation of a bin hy,,, Is fixed (i.e., &,).

Fj. That is, flat regions of an image produce smaller values of
£ while nonflat regions produce larger values. However,
besides the flat regions of an image, there are two kinds of
intensity variations around a central pixel which might lead
to smaller differential excitations. One is the clutter noise
around a central point; the other is the “uniform” patterns as
shown in [34]. Meanwhile, the latter provides a majority of
variations in comparison to the former, and the latter can be
discriminated by the orientations.

Here, we let M = § for the reason that we attempt to use
these intervals to approximately simulate the variances of
high, middle, or low frequency in a given image. That is, for
a pixel P, if its differential excitation & €l or I5, we say
that the variance near F; is of high frequency; if £ €1y or g,
or & € Iy or I3, we say that the variance near P, is of middle
frequency or low frequency, respectively.

224 Weight for a WLD Histogram

Intuitively, one often pays more attention to the regions of
high variances in a given image compared with the flat

regions. So, the different frequency segments H,, should
play different roles in a classification task. Thus, we can
assign different weights to different segments H,, for a
better classification performance.

For weight selection, a heuristic approach is to take into
account the different contributions of the different seg-
ments Hy (m=0,1,...,M —1). First, by computing the
recognition rate on a collected texture data set from the
Internet for each subhistogram H,, separately, we obtain
M rates R = {rn}; then, we set each weight wp, = r/ 3, 7,
as shown in Table 1. Simultaneously, in this table, we also
collect statistics on the percentage of frequencies of each

TABLE 1
Weights for a WLD Histogram

Ho Hh Ha Ha Hy Hs
Frequency percent 02519 01179 01186 0.095 0.0875 0.3276
Weights { @2, ) 02688 0.0852 (.0955 0.1000 0.1018 (.3487
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Fig. 5. The upper row contains original images, and the bottom row
shows the filtered images by the proposed WLD. The value of the
intensity in the filtered image is the differential excilation scaled to
[0, 255] for visualization purposes.

subhistogram. From this table, one can find that these two
groups of values (i.e., frequency percentage and weights)
are similar. In addition, a high frequency segment Hy or H;
mcludes more frequencies (cf. Fig. 3 for more details) than
the middle or low frequency segments.

Note that a high frequency segment Hy or H; taking a
larger weight is consistent with the intuition that a good
classification feature should pay more attention to the
salient variations of an object. Here, besides the large
changes at the edges or occlusion boundaries within an
image, the approach of computing differential excitation of
a pixel (i.e., a sum of the differences of p neighbors against a
central pixel) further contributes to a larger weight of Hy or
H;. However, a side effect of the weighting approach might
enlarge the influence of noise. One can avoid this
disadvantage by removing a few bins at the end of high
frequency segments, that is, the left end of Hy, and the right
end of Hyrq ; (7‘, = 0:1...,T— 1)

Although the weighis shown in Table 1 are computed
from the texture classification, our experiments show that
they are also useful for face detection, since faces can be
seen as a composition of micropatterns which are well
described by a local operator [2].

2.3 Characteristics of WLD

The proposed descriptor, WLD, is based on Weber’s Law. It
has several advantages, such as detecting edges elegantly,
robustness to noise and illumination change, and its
powerful representation ability.

WLD is based on a physiological law. It extracts features
from an image by simulating a human sensing his/her
surroundings. Specifically, as shown in Fig. 1, a WLD uses
the ratio of the intensity differences +2 to 1, motivated by
Weber's Law. As expected, WLD gains powerful represen-
tation ability for textures.

The detected edges match the subjective criterion ele-
gantly since WLD depends on the perceived luminance
difference. For example, as shown in (2), WLD preserves the
differences (+%°} between its neighbors and a center pixel.
Sometimes 3" may be quite large. But if 2/ is smaller
than a noticeable threshold, there is not a noticeable edge. In
contrast, v3° may be quite small. But if % /v is larger than a
noticeable threshold, there is a noticeable edge. In Fig. 5, we
show some filtered images produced by WLD, from which
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one could conclude that a WLD extracts the edges of images
perfectly even with heavy noise {Fig. 5, middle column).
Furthermore, the results of texture analysis show that much
of the discriminative texture information is contained in high
spatial frequencies such as edges [34]. Thus, the WLD works
well to obtain a powerful feature for textures.

WLD is robust to noise appearing in a given image.
Specifically, 2 WLD reduces the influence of noise, as it is
similar to the smoothing in image processing. As shown in
Fig. 1, a differential excitation is computed by a sum of its
p-neighbor differences to a current pixel. Thus, it reduces the
influence of noisy pixels. Moreover, the sum of its p-neighbor
differences is further divided by the intensity of the current
pixel, which also decreases the influence of noise in an
image. Por more details, please refer to Section 5.5.

WLD has been developed to reduce the effects of
illumination change. On the one hand, it computes the
differences " between its neighbors and a current pixel.
Thus, a brightniess change in which a constant is added to
each image pixel will not affect the differences values. On
the other hand, WLD performs the division between the
differences v2° and 12!. Thus, a change in image contrast in
which each pixel value is multiplied by a constant will
multiply differences by the same constant, and this contrast
change will be canceled by the division. Therefore, the
descriptor is robust to changes in illumination.

Furthermore, regrouping the differential excitation and
orientation into a 2D histogram and then weighting the
different frequency segments can further improve the
performance of the WLD deseriptor.

2.4 Multiscale Analysis

WLD features described above are extracted from the 3 x 3
neighborhood, which implies a single and fixed granularity.
Motivated by the idea of [34], we also develop the
multiscale WLD for characterizing local salient patterns in
different granularities. It is computed using a square
symmetric neighbor set of P pixels placed on a square
whose sides have the length (2R + 1), as shown in Fig. 6.
Parameter P denotes the number of the neighbors, whereas
R determines the spatial resolution of the operator.

With the neighborhood definition in Fig. 6, multiscale
analysis of WLD can be accomplished by combining the
information provided by multiple operators of varying
{P. R). We denote the operator as WLDp p. Although we
derive the operator for a general case based on a squared
symmetric neighbor set of P members on a square with side
length (2R + 1), one can also generalize them to a circular
one. In addition, a straightforward approach for multiscale
analysis is to concatenate the histograms from multiple
operators realized with different (P, R). In general, it can
improve the discrimination of a single resolution of (P, R)
(cf. Section 3.4).
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TABLE 2
Comparison of WLD with other Descriptors
According to the FLS Framework
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TABLE 3
Comparison of the Average Time Consumption
with LBP and SIFT

filtering labeling statistics
LBP Intensity Threshelding Histogram over
difference at zero the binary strings
. K ) Histogram over the
Intensity Orientation ) )
SIFT . L. weighted gradient on
difference quantization

dominant orientation

! ) Histogram over the
. Orientation R . o
WLD  Weber ratio L, differential excitation
gquantization

on deminant orientation

2.5 Comparison with Existing Descriptors

Using the filtering, tabeling, and statistics (FLS) framework
described in [17}, we can easily compare our descriptor with
the existing ones, as shown in Table 2. Note that, in the FLS
framework, the step filtering depicts the interpixel relation-
ship in a local image region; the step labeling (which
includes quantization and mapping) describes the intensity
variations which cause psychology redundancies; the step
statistics capture the attribute which is net in adjacent
regions {17].

For LBP, it computes the intensity differences between
the center pixel z, and its neighbors in the first stage, and
the responses of each neighbor are thresholded at zero and
are then concatenated to a binary string in the second sta ge.
Each binary string corresponding to each pixel is then used
to compute a histogram feature in the last stage. For SIFT, it
computes the gradient magnitude and orientation at each
image sample point in a region around the keypoint
location in the first stage. The orientations are quantized
to eight dominant ones in the second stage. For the third
stage, the gradient magnitudes are weighted by a Gaussian
window, and then accumulated into orientation histograms
by summarizing the contents over denoted subregions.

Although WLD alse computes the difference between
the center pixel z, and its neighbors like LBP in the first
stage, these differences are added together and then
divided by the center pixel z. to obtain the differential
excitation like the Weber fraction. Differently from LBP,
WL uses the gradient orientations to describe the direction
of edges. The gradient orientations are then quantized to
eight dominant orientations in the second stage. Differently
from SIFT, we use the differential excitation but not the
weighted gradient to compute the histogram. Moreover,
differential excitations are not accumulated over denoted
subregions around the keypeint location. In contrast, we
compute the frequency of the occurrence of differental
excitations for each bin of the histogram. Although we
weighed the WLD histogram as shown in Table 1, the
weighted object is the frequency of each bin, and
the weights are computed according to the recognition
performance based on the statistics, not weighting the
values of gradients in terms of the distances between the
neighbors and the keypoint, as does SIFT [27].

Furthermore, we also compare the time complexity of
WLD with LBP and SIFT theoretically. Given an image in

‘Methods - LBP WLD SIFT

Time (s) 0.0015 0.0027 0.5419

m X n, the time complexity for WLD is very Jow. It is as
follows:

Owirn = Cimn, (14)

where £ is a constant. We use C) for the computation of
each pixel m WLD through several additions, divisions, and
filtering with an arctangent function.

Likewise, the time complexity for LBP is also very simple:

(15)
where (3 is also a constant. We use G, for the computation
of each pixel in LBP through several additions.

However, the time complexity for SIFT is a little
complicated:

Orpp = Comn,

Osirr = Cai(eB){pg) (mn) + Caaky + Caakast -+ Cakyst.
(18)

Here, the four terms correspond to the four steps: detection
of scale-space extrema, accurate keypoint localization,
orientation assignment, and building the local image
descriptor. Meanwhile, Cy; (1 = 1,...,4) are four constants.
For the first term, it represents the convolution of a variable-
scale Gaussian with the given image. Here, the size of the
convolution template is p x g; a, 3 represent the levels of
octave and scales of each octave, respectively. For the second
term, &, represents the number of the keypoint candidates.
For the third and fourth terms, ks represents the number of
the keypoints and s, ¢ represent the size of the support
regions for each keypoint (e.g., s, ¢ = 16). So, we have:

Osrer = Cy{af)(pg)(mn). (17

Comparing (14) and (15) with (17), one can find that both
LBP and WLD are more efficient than SIFT. For the
quantitative comparison of time consumnptions of these
three descriptors, please refer to Section 3.4 and Table 3.

3 APPLICATION TO TEXTURE CLASSIFICATION

In this section, we use the WLD histogram feature for
texture classification and compare both the performance
and computational efficiency with those of the state-of-the-
art methods.

3.1 Background

Texture classification plays an important role in many
applications, such as robot vision, content-based access to
image databases, and automatic tissue recognition in
medical images. Several approaches to the extraction of
texture features have been proposed. On the one hand, there
are some recent attempts using sparse descriptors for this
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(b)

Fig. 7. Some examples from two texture data sets (a) Brodatz and
{b) KTH-TIPS2-a,

task, such as [13], [25]. Dorkd and Schmid optimized the
keypoint detection and then used SIFT for the image
representation [13]. Lazebnik et al. presented a probabilistic
part-based approach to describe the texture and object [25].
On the other hand, there are also several attempts using
dense descriptors for this task, such as [22], [28], [33], [34],
[35], [45], [46]. For example, Manjunath and Ma used Gabor
filters for texture analysis [28]. Ojala et al. proposed the use
of signed gray-level differences and their multidimensional
distributions for texture description [35]. The original LBP is
its simplification, discarding the comtrast of local image
texture [33], [34].

3.2 Data Set and Evaluation Protocol

Experiments are carried out on two different texture
databases: Brodatz 7] and KTH-TIPS2-a [9). Examples of
the 32 Brodatz [35] textures used in the experiments are
shown in Fig. 7a. The images are 256 x 256 pixels in size, and
they have 2536 gray levels. Each image was divided into
16 disjoint samples of size 64 x 64 pixels, which were
independently histogram-equalized to remove luminance
differences between textures. To make the classification
problem more challenging and generic and to make a
comparison possible, we use the same experimental setups
as [22], [35], [45]. Three additional samples were generated
from each sample: 1) a sample rotated by 90 degrees, 2) a
64 x G4 scaled sample obtained from the 45 x 45 pixels in the
middle of the original sample, and 3) a sample that was both
rotated and scaled. Consequently, the entire data set, which
we refer to as the Brodatz data set, is comprised of 2,048
samples, with 64 samples in each of the 32 texture categories.

The KTH-TIPS2-a database contains four physical,
planar samples of each of 11 materials under varying
illumination, pose, and scale. Some examples from each
sample are shown in Fg. 7b. The KTH-TIPS2-a texture data
set contains 11 texture classes with 4,395 images. The
images are 200 x 200 pixels in size (we did not include those
images which are not of this size}, and they are transformed
into 256 gray levels. The database contains images at nine
scales, under four different illumination directions, and
three different poses.

Note that we vse different evaluation setups for the
Brodatz and KTH-TIPS2-a texture databases for fair com-
parison with other typical evaluations. Specifically, for the
Brodatz textures we use the same setup as that used in [22],
[35], [45]. Experiments are carried out with 10-fold cross
validation to avoid bias. For each round, we randomly
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divide the samples in each class into two subsets of the same
size, one for training and the other for testing. In this
fashion, the images belonging to the training set and to the
test set are disjoint. The results are reported as the average
value and standard deviation over the 10 runs. In contrast,
for the KTH-TIPS2-a textures, we use the same evaluation
setup proposed by Caputo et al. [9]. Specifically, in our
experiment, only three samples are available during train-
ing, while testing is subsequently performed on all the
images of all the remaining samples. Similarly, this
experiment is also repeated four times by randomly
selecting three different samples for training. The results
are also reported as the average value over the four runs.

3.3 The WLD Histogram for Classification

To perform the texture classification, there are two essential
issues: texture representation and classifier design. We use
WLD histogram feature as a representation and build a
system for texture classification. For texture representation,
given an image, we extract the WLD histogram as shown in
Fig. 4. Here, we experientially set M =6, T =8, §=20. In
addition, we also weighed each subhistogram H,, using the
same weights, as shown in Table 1.

As the classifier we use the K-nearest neighbor, which has
been successfully utilized in classification. In our case,
K = 3. To compute the distance between two given images
I, and Ip, we first obtain their WLD histogram features H’
and H?. We then measure the similarity between H' and 2.
In our experiments, we use the normalized histogram
intersection II(H', H?) as a similarity measurement of two
histograms [42]:

L
I(H', 5% =Y min(H", H*), (i8)

i=1
where L is the number of bins in a histogram. The intuitive

motivation for this measurement is to calculate the common
parts of two histograms.

3.4 Experimental Results
Experimental results on Brodatz and KTH-TIPS2-a textures
are illustrated in Fig, 8. Herein, the accuracy of our mefhod is

given as a percentage of correct classifications. It is computed
as follows:

# correct classification

accuracy = .
K4 # total images

(19)

As shown in Fig. 8a, we compare our method with others on
the classification task of Brodatz textures: SIFT, Jalba et al.
[22], Ojala et al. [35] (i.e., signed gray-level difference (SD)
and LBF), Urbach et al. [45], and Manjunath and Ma [28] (i.e.,
Gabor). Note that all of the results from other methods in
Fig. 8a are quoted directly from the original papers except for
those of Gabor [28] and SIFT. The approach in [28] is a
“traditional” texture analysis method using a global mean
and standard deviation of the responses of Gabor filters. We
use the results in-[35] for a substitution, in which Ojala et al.
use the same setups for Gabor filters of six orientations and
four scales. In addition, SIFT is reimplemented by us
according to [13], in which they optimized the keypoint
detection to achieve stable local descriptors. In addition, we
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Results for Brodatz textures
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Results for KTH-TIPS2-a textures
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Fig. 8. Resuits comparison with state-of-the-art methods on Brodatz and
KTH-TIPS2-a textures, where the values above ihe bars are the

accliracy (both (a} and {b}) and corresponding standard deviations (@)
anly).

also refer to the code by Vedaidi (http:/ /vision.ucla.edu/
~vedaldi/code/siftpp/siftpp.html).

As shown in Fig. 8b, we also compare our method with
SIFT and LBP on the classification task of KTH-TIPS2-a
textures. Likewise, both SIFT and LBP are reimplemented
by us. However, in the implementation of SIFT, we use the
Laplacian to detect keypoints in Fig. 8a, while in Fig. 8b, we
employ the Harris detector, following the idea in [13].

From Fig. 8, one can find that our approach works in a
very robust way in comparison to other methods. Moreover,
the standard deviation of WLD shown in Fig. 8a is smaller
compared with other methods. Although we have rotated
and scaled the subimages of Brodatz textures, we also obtain
favorable results. It shows that WLD extracts powerful
discriminating features which are robust to rotation and
scaling. The poorer performance of SIFT can be partly
explained by the small image size (e.g., 64 x 64 in Brodatz
database) for a sparse descriptor, from which too small a
number of keypoints may be located, leading to the
performance decrease. In addition, the performance of LBP
can be improved by combining the contrast of images [34].
Note that due to the fact that the variations in the KTH-
TIPS2-a set (i.e., pose, scale, and illumination) are much
more diverse than those of the Brodatz set, the accuracies of
all the tested descriptors (WLD, LBP, and SIFT) are
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accordingly lower than those on the Brodatz. Note that we
use the K-nearest neighbor classifier in this experiment
because we attempt to compare the performances of
different descriptors. However, using the proposed sup-
port-vector machine (SVM) based classification techniques
proposed by Caputo et al. [9] might improve the perfor-
mance significantly.

Since we have further extended WLD to multiscale {cf.
Section 2.4), we also compared the performances of the
multiscale versions of LBP (or multiresolution in [34T)
and WLD. In Fig. 8b, we denote them by MLBP and
MWLD, respectively. Specifically, MLBP denotes LBP; 4 +
LBPIE;= 2+ LBPy 3 and MWLD denotes V\"LD& 1+
WLDyg, 2 -+ WLD4, 5. The features of MLBP and MWLD for
each image is to concatenate the histograms from multiple
operators realized with different (P, R) as discussed in
Section 2.4. From Fig. 8b, one can find that, compared with
their single-resolution counterparts, both MWLD and MLBP
significantly improve the accuracies (by 8.3 and 8.2 percent,
respectively).

Besides the performance comparison with other methods,
we also carried out an experiment on the Brodatz data set to
compare the efficiency of WLD with LBP and SIFT. The
experiments are performed on a 1.86 GHz Intel Pentium 4
processor using 1.50 GB RAM by executing C/C++ code. As
shown in Table 3, to extract the features for an image of this
data set, the average time consumptions of LBP and WL}
are 0.0015 and 0.0027 seconds, respectively, while that of
SIFT is 0.5419 seconds. Clearly, the computation of both LBP
and WLD is much faster than that of SIFT. Herein, the codes
of both [.BF and SIFT are reimplemented by us. In addition,
most of the time consumed by SIFT is spent on the first step
{i.e, scale-space extrema detection), which needs to compute
the convolution of a variable-scale Gaussian with the given
image at different levels of octaves and scales {cf. (17)).
Hence, inspired by SIFT, some speeded up SIFT-like
descriptors are proposed, such as [4], [18], and [44].

4 APPLICATION TO FACE DETECTION

In this section, we use a WLD histogram for human face
detection. Although we train only one classifier, we use it to
detect frontal, occluded, and profile faces. Furthermore,
experimental results show that this classifier obtains
comparable performance to state-of-the-art methods.

4.1 Background

The goal of face detection is to determine whether there are
any faces in a given image and return the location and
extent of each face in an image if one or more faces are
present. Recently, many methods for detecting faces have
been proposed, and most of them extract the Ffeatures
densely [51]. Among these methods, learning-based ap-
proaches to capture the variations in facial appearances
have attracted much attention, such as [39], [41]. One of the
most important steps forward is the appearance of the
boosting-based method, such as [6], [19}, [20], [26], [36], [471,
[49], [50]. In addition, Garcia and Delakis use a convolu-
tional face finder for fast and robust face detection [15].
Hadid et al. use LBP for face detection and recognition [16].
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Fig. 8. An illustration of a WLD histogram feature for face datection.

4.2 WLD Histogram for Face Samples

Based on WLD, as shown in Fig. 9, we propose a new facial
representation for face detection. Specifically, we divide an
input sample into overlapping regions, and use a
P-neighborhood WLD operator (P = & and R = 1). In our
case, we normalize each sample to w x h (e.g., 32 x 32) and
derive a WLD histogram representation as follows:

We divide a face sample of size w x h into K overlapping
blocks (K =9 in our experiments) of size (1/2) x {h/2)
pixels. The overlapping size is equal to w/4 pixels in a
column and /4 pixels in a row. For each block, we compute
a concatenated histogram H*, k=0,1,...,K — 1. Herein,
each H* is computed as shown in Fig. 4. That is, each H* is a
concatenated histogram with A subhistograms HE,
m=0,1....M~1, and H® is also concatenated with T
histogram patches H}, ¢ =0,1,...,7 — 1. Moreover, H,
is an S-bin histogram patch. In addition, for this group of
experiments, we experientially set M =6, T=4, §=3.
Note that for each subhistogram H%, we use the same
weights as shown in Table 1.

For .each block, we train an SVM dlassifier using an
H* histogram feature to verify whether the kth block is a
valid face block {in our case, we use a second degree
polynomial kernel function for the SVM classifier). If the
number of the valid face blocks is larger than a given
threshold Z, we say that a face exists in the input window.
As to the parameter Z, its value is a trade-off between the
detection rate and false alarms for a face detector. That is,
when the value of = becomes larger, the detection rate
decreases but the false alarms also decrease. In contrast,
when the value of = becomes smaller, the detection rate
increases but the false alarms also increase. The value of S
also varies with the pose of faces. For more details, please
refer to Section 4.4.

4.3 The Data Set

The training set is composed of two sets, i.e., a positive
set Sy and a negative set 5,. The positive set consists of
50,000 frontal face samples. They are collected from Web,
video, and digital cameras, and cover wide variations in
poses, facial expressions, and also in lighting conditions. To
make the detection method robust to an affine transform,
the training samples are often rotated, tanslated, and
scaled [39]. After such preprocessing, we obtain the set §;
including 100,000 face samples. The negative set S, consists
of 31,085 images containing no faces, and they are collected
from the huternet.
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Fig. 10. A performance comparison of our method with some existing
mathods on the MIT+CMU frontal faca test set. :

As for the test sets, we use three: The first one is the
MIT+CMU frontal face test set, which consists of 130 images
showing 507 upright faces [39]. The second ore is a subset
from the Aleix Martinez-Robert (AR) face database [29]. The
AR face database consists of over 3,200 color images of
the frontal view faces from 126 subjects. However, we
choose those images with occlusions {i.e., conditions of §-13
from the first session, and conditions of 21-26 from the
second session). The resulting test set consists of 1,512
images. The third one is the CMU profile testing set [41]
(441 multiview faces in 208 images).

Note that the face samples are of the size 32 x 32. In
order to detect some faces smaller or larger than the sample
size, we enlarge and shrink each input image.

4.4 Classifier Training

As described in Section 4.3, the S set is composed of a large
number of face samples, Furthermore, we can also extract
hundreds of thousands of nonface samples from the $,, set.
Thus, it is extremely time consuming to train an SVM
classifier using the two sets Sy and S,,. For this problem, we
use the resampling methods to train an SVM classifier.
Specifically, motivated by [50], we also resample both the
positive and negative samples during classifier training,

For the positive samples, we first randomly draw a
subset Sy, with the size N, (in our experiments, N, = 3,000).
Likewise, we also randomly crop out a subset S, with
the size N, {in our experiments, N, = 3,000} from the
nonface database S,. Note that for the samples in 5,;, we
normalize their sizes to w x h (i.e., 32 x 32). Subsequently,
we extract a WLD histogram of both the face and nonface
samples as shown in Fig. 9. Using the extracted features of
faces and nonfaces, we train a lower performance SVM
classifier. Simultaneously, we obtain a support-vector set
51, which includes a face support-vector subset S}and a
nonface suppork-vector subset 52,

Using the resulting lower performance SVM classifier,
we test it on the two training subsets (i.e., §; and §,) to
collect N, misclassified face samples Sy, and N, misclassi-
fied nonface samples Sps. Combining the newly collected
sample sets (ie., S and S,y) and the two support-vector
subsets obtained last time (i.e, §} and S}), we obtain two
new training sets: (S} + Sp) and (S} + S,2). We then train
another SVM classifier with a better performance. After

Restrictions apply.
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Fig. 11. A performance comparison of our method with some existing
methads on the CMU profile testing set.

several iterations of the aforementioned procedure, we
finally train a well-performed SVM classifier.

Note that we actually train K subclassifiers of SVM.
Each subclassifier corresponds to a block as shown in
Fig. 3. Combining these K subclassifiers, we obtain a final
strong classifier,

4.5 The Experiment Resulis

The resulting final strong SVM classifier is tested on the
three testing sets described in Section 4.3. The experimental
results are shown in Figs. 10 and 11 and Table 4,
respectively. Herein, we also compare the performance of
the resulting SVM classifier (we call it “SVM-WLD") with
some existing methods. Note that all of the results from
other methods in Figs. 10 and 11 are quoted directly from
the original papers except for Hadid et al. {16] (which is
implemented by us following their idea). During testing on
these sets, the parameter = takes the different values as
described in Section 4.2. For the MIT+CMU frontal test set,
the AR test set, and the CMU profile test set, = is equal to 8,
7, and 6, respectively.

As shown in Fig. 10, we compare the performance of
our method with some existing methods on the MIT+CMU
frontal face test set, such as Bourdev and Brandt [6],
Garcia and Delakis [15], Hadid et al. [16], Huang et al.
[20], Lin et aL [26}, and Viola and Jones [47]. Meanwhile,
Lin et al. also proposed a method for detecting occluded
faces. SVM-Gray denotes that we only use the gray
intensities as input for the SVM classifier, and other
experimental setups are the same as for the SVM-WLD.
From Fig. 10, one can find that SVM-WLD locates
893 percent faces without any false alarm, and works
much better than SVM-Gray (76.3 percent faces without a

TABLE 4
Performance of Our Method on the AR Test Set

Detection rate False Alarms

99.7% 0

100% 3

1715

Fig. 12. Some experimental results from our detector on the MIT+CMU
frontal test set (first row), the AR database (second row}, and the CMU
profile test set (third row).

false alarm). Purthermore, SVM-WLD is comparable to the
existing methods, e.g., Lin et al. [26].

In Table 4, we show the detection results on the AR test
set. From this table, one can find that SVM-WLD locates
99.7 percent faces without any false alarm and locates all
faces with only three false alarms. In addition, in Fig. 11,
we compare SVM-WLD with some existing methods, such
as Huang et al. [20] and Schneiderman and Kanade [41] on
the CMU profile test set. To locate those profile faces with
in-plane rotation, we also rotate the testing images. From
Fig. 11, one can find that SVM-WLD locates 85.7 percent
faces without any false alarm.

However, different criteria (e.g., the training examples
involved and the number of scanned windows during
detection, etc.) can be used to favor one over another, which
makes it difficult to evaluate the performance of different
methods, even though they use the same benchmark data
sets [51). Thus, the results shown in Figs. 10 and 11 just
illustrate that our method works robustly and achieves a
performance comparable to the state-of-the-art methods.
Some results from our detector on these three test sets are
shown in Fig. 12

5 MORE EXPERIMENTAL VALIDATIONS AND
DISCUSSIONS

In this section, by conducting more experimental valida-
tions, we will discuss some issues about our method,
including the relationship between WLD and Weber's Law,
the influence of the parameter setting on the performance of
WLD, the different filter functions for the computation of
the differential excitation, the influence of the WLD

components on its performance, and the robustness of
WLD to noise.

5.1 WLD and Weber's Law

In this section, we compare the performance of the
proposed descriptor WLD with another descriptor which
also follows Weber’s Law, but employs a logarithm filter
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TABLE 5
Performance Comparison of W LD, and W LDy,

Method WEDarvtan WLDi
Brodatz 975 933
KTH-TIPS2-a 56.4 50.2

function. We analyze the reason for the performance
difference between these two descriptors, and provide
evidence to support our results and analyses.

As presented in Section 2.1, WLD is motivated by
Weber's Law. However, we should point out that WLD is
not the only possible way to follow the Law. Its computing
approach also does not exactly match the Law well,
Moreover, an alternative method exactly following the
Law might be as follows, employing a Logarithm operator:
Specifically, Weber’s Law can be described as dp = C(dI/ T},
where dp is the differential change in perception, and df is
the differential change in image intensity. By integrating
this equation, one can get p = Clog(f/I,), where I. is the
threshold below which no change can be perceived. Hence,
the 2D histogram of log(I/],) and gradient orientation can
also be employed as an image descriptor. Furthermore, to
improve the robustness of log(Z/I,.) to the variations due to
illumination and noise, one can use log(I/1;) (ie.,
log{I/I,) —log(l../I.)) instead, where I, is the mean in a
local neighborhood. We call this alternative descriptor
WLDy,, and denote the descriptor presented in Section 2
as WELD o, for clarity.

We compare the performance of the two descriptors
WLDy, and WLD o on the Brodatz and KTH-TIPS2-a
textures. The results are shown in Table 5. Note that I, is set
to 5 in the experiments. From the table, one can find that
WL Daretan outperforms W.ILD;, in both databases, although
the latter matches Weber’s Law well. One explanation for
W LD getan, outperforming W LDy, in both databases is that
the performance gain of WZLD. benefits from the
gradient computation with the filter foo when we compute
the differential excitations in (2) since the gradient is
relatively more robust to the illumination variations com-
pared with the image intensity. The observation that the
performance gap for the KTH-TIPS2-a textures (6.2 percent)
is a little larger than that for the Brodatz textures (4.2 percent}
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Fig. 13. Average histogram of log(7/1,,) on 2,000 texture imagas. Nots
that for log(1/1,..}, we only plot the values in the interval [-1.5,1], and the
smaller and larger values are counted into the first bin and the last bin.

also stipports this point since the illumination variations of
the KTH-TIPS2-a textures are much more diverse than those
of the Brodatz textures.

We provide more evidence to validate that WLD,
outperforms WD, with the distribution of the average
histogram. Specifically, as shown in Pig. 13, we plot the
average histogram of log(I/ 1.} on 2,000 textures images. By
comparing Figs. 13 and 3, one can find that the frequencies
of the differential excitations of WL D,y distribute more
evenly than those of the log(f/f,), which also provides
evidence that the discrimination of WL Dy wen outperforms
that of WLDy,.

5.2 The Effects of Parameters

In this section, we discuss the influence of the parameter
setting of M, T, and 5. For a histogram-based method, the
setting of M, T, and § is a trade-off between discrimin-
ability and statistical reliability. In general, if these para-
meters (i.e., M, T, and §) become larger, the dimensionality
of the histogram (i.e., the number of its bins) becomes larger
and thus the histogram becomes more discriminable.
However, in a real application, the entries of each bin
become smaller because the size of the input image/ patch is
fixed. This degrades the statistical reliability of the
histogram. If the entries of each bin become too small, it
in turn degrades the discriminability of the histogram
because of its poor statistical reliability. In contrast, if these
parameters (ie., M, T, and §) become smaller, the entries of
each bin become larger, and the histogram becomes
statistically more reliable. However, if these parameters
are too small, the dimensionality of the histogram also
becomes too small, and it degrades the discriminability of
the histogram. The experiment results with the Brodatz
textures when varying the parameters are plotted in Pig. 14.

Accuracy
i=]
©
Accurasy
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Fig. 14. The effacts of using aifferent M, T, and § paramsiers.
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Fig. 15. (a) Parformance comparison of WLD using different filter functions; (D) performance comparison of WLD using a sigmoid function and the
parameter § takes different values; (c) and {d) are the plots of average histograms of the differentiat excitations using diffsrent functions on 2,000
texture images, i.e., (¢} for sigmoid {3 = 1) and (d) for the Weber fraction Grain{z) (We only plot the values in the interval [—5, 5. For those smaliler
and larger values, we use the first and last bin to compute their frequencies, respectively).

In these experiments, we just vary one parameter and fix
the other ones. One can discover that the performance
changes slightly, which shows that the histogram-based
method is relatively robust, although obviously its dimen-
stonality changes.

5.3 Performance Comparison Using Different Filters
We compare the influence of different filiers, as mentioned
in Section 2.2.1 (i.e., arctangent and sigmoid functions) on
the performance of the WLD descriptor. The test data set is
the Brodatz data set, and the performances of three different
filters are shown in Fig. 15a. In the figure, “linear” means
that we directly use the Grui,(z.) (shown in (3)) as the
differential excitation of the current pixel £(z.).

From Fig. 152, one can find that both the WLD descriptors
using the sigmoid (8 = 1) and arctangent functions obtain
very similar performance, and both outperform the WLD
descriptor using the linear form (i.e., Grayo(2.)). As shown in
Figs. 15¢ and 15d, we plot the average histograms of the
differential excitations using a sigmoid function and
Ghratin(z.} on 2,000 texture images. One can observe that both
the average histograms of the differential excitations using
sigmoid function (as shown in Fig. 15c) and using arctangent
function (as shown in Fig. 3) are more even than that using
the linear form.

We farther compare the performance of the WLD
descriptor using a sigmoid function and the parameter
takes different values. As shown in Fig. 15b, one can see
that the accuracy decreases slightly as 3 increases. There-
fore, we set =1 in Fig. 15a.

Accuracy

Fig. 16. Performance comparison of different components of WLD.

5.4 Performance Comparison of Components

As described in Section 2, WLD consists of two components:
differential excitation and orientation. In this section, we
compare the contributions of these two components to the
performance of WLD. In addition, we also test the perfor-
mance of directly using gradient, which is computed as
shown in (2). In these comparisons, one can make thorou gh
observations on the contributions of these components.

Tests were conducted on the Brodatz textures, and the
performances are shown in Fig. 16. In the figure, “gradient”
denotes the method using gradients directly computed by
(2), "differential excitation” denotes that using the differ-
ential excttation £(z) computed by (6); “orientation” means
that using the gradier'lt orientation #(z} computed by (8).
Each of these components from each image is grouped as a
histogram for classification.

From Fig. 16, one can see that the performance gap
between differential excitation and gradient (23.2 percent) is
much larger than that between WLD and differential
excitation (6.9 percent). Furthermore, the performance of
orientation is close to that of differential excitation. It shows
that the ratio used for the computation of differential
excitation and orientation is important for the performance
of the WLD descriptor. We believe that the ratio can remove
the multiplicative noise further compared with gradient,
which is helpful for the discrimination of a descriptor.

Accuracy

tog(1/SNR)

Fig. 17. A performance comparison between WLD, LBP, and SIFT on
the Brodatz textures with added white Gaussian noise.
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5.5 Robustness to Noise

As discussed in Section 2.2, both of the two components of
WLD (ie., differential excitation and orientation) are
compited using the ratio (cf. (6) and (8)). Thus, WLD is
robust to multiplicative noise. In this section, we test the
robustness of WLD to additive noise, and also compare its
performance with that of SIFT and LEBP.

As can be seen from Fig. 17, we compare the perfor-
mances of WLD, LBP, and SIFT on the Brodatz textures with
added white Gaussian noise. Here, the x axis is log(1/SNR),
i.e., the logarithm of the inverse of the signal-to-noise ratio
(SNR). SNR is computed as: SNR = f(I}/f(N)}, where f(I)
and f(N) are the power of the input image [ and the noise
image N: f(I) = 13770 |12, f(N) = L3200 IN?|, where n is
the dimensionality of the input image and noise image.

From Fig. 17, one can see that the three descriptors WLD,
EBP, and SIFT are equally robust to the added white
Gaussian noise when the noise strength is smaller than
5 percent. The performances of these three descriptors
decrease when the noise strength is larger than 5 percent.
However, the performance of WLD s still better than that of
SIFT and LBP. For WLD, we believe that the reasons lie in
the following issues: the computation means of differential
excitation using the gradient and ratio, the suppression
toward the ends of arctangent function, and the histogram
computation clustering the near differential excitations.

6 CONCLUSION

We propose a novel discriminative descriptor called WLD.
It is inspired by Weber’s Law, which is a law developed
according to the perception of human beings. We organize
WLD features to compute a histogram by encoding both
differential excitations and orientations at certain locations.
Experimental results show that WLD illustrates a favorable
petformance on both Brodatz and KTH-TIPS2-a textures
compared with the state-of-the-art methods (e.g., SIFT and
LBP). Besides the performance comparison with the other
methods, we also compare the computational cost of WLD
with LBP and SIFT. The analysis shows that the computa-
ton of WLD is much faster corpared with that of SIFT, and
is comparable to that of LBP.

For the face detection task, we train only one classifier,
but it can accurately detect the frontal, occluded, and profile
faces. The results on the three data sets, Le., the MIT+CMU
frontal face test set, the AR face database, and the CMLJ
profile testing set, demonstrate the effectiveness of the
proposed method through experiments and comparisons
with other existing face detectors.

The current work has been developed for texture
classification and face detection. Future interest kes in
.how to exploit the proposed descriptor for the domain of
face recognition and object recognition.
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