注意事項:

- 1.答案卷書寫題號依序作答,不必抄題,每題 10 分。
- 2.答案卷不可書寫任何可辨別個人姓名或特殊標記,違反者以零分計算。
- 3.請於試題紙上填寫准考證號,繳卷時「試題」、「答案卷」一併繳回。
- 1. What is a deadlock, and how can it be avoided? Discuss several deadlock-avoidance strategies.
- 2. Given the dependency diagram shown in Figure 1, answer Questions (a) through (c):

Figure 1. The Dependency Diagram for Question 2

- (a) Identify and discuss each of the indicated dependencies.
- (b) Create a database whose tables are at least in 2NF, showing the dependency diagrams for each table.
- (c) Create a database whose tables are at least in 3NF, showing the dependency diagrams for each table.
- 3. Suppose you are working within the framework of the conceptual model in Figure 2.

Figure 2. The Conceptual Model for Question 3

Given the conceptual model in Figure 2,

- (a) write the business rules that are reflected in it,
- (b) a weak relationship, and
- (c) a strong relationship.
- 4. Determine each of the following statements to be correct or not.

(a)
$$5n^4 + 3n^2 = \Theta(n^4)$$

(b)
$$4n^{2.01} + 3n \log n = \Theta(n^{2.01})$$

(c)
$$5^n + 7 = O(3^n)$$

(d)
$$2n^3 + 3n^2 \log n = \Theta(n^2 \log n)$$

- 5. It is assumed that we have the following key values in sequence: 30, 22, 18, 31, 25, 5, 10. Write out the max heap after each value is inserted into the heap.
- 6. Please show that Kruskal's algorithm generates a minimum cost spanning tree.
- 7. Fill out the following form by using the Big-O notation:

	Space Complexity	Time Complexity
Insertion Sort		
Quick Sort		
Merge Sort		
Heap Sort		

- 8. Illustrate and explain the creation of a TCP connection by the three-way handshake.
- 9. What is the main advantage of using protocol ports instead of process identifier to specify the destination within a machine?
- 10. Design a Huffman code for a message source $S=\{s_1, s_2, s_3, s_4, s_5\}$ with the probabilities $p(s_1)=\frac{1}{2}$, $p(s_2)=\frac{3}{16}$, $p(s_3)=\frac{1}{8}$, $p(s_4)=\frac{1}{8}$, $p(s_5)=\frac{1}{16}$. Calculate the average length of the code and compare it to the entropy of the source.