注意事項:

- 1.本科目考試時間共90分鐘。
- 2.答案卷書寫題號依序作答,不必抄題。
- 3.試卷不可書寫任何辨別個人姓名或特殊標記,違反者以零分計算。
- 4.請於試題簽名並填寫准考證號碼,繳卷時「試題」、「答案卷」一併繳回。
- 1. Prove by induction that for $n \ge 1$,

$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$$
where n! stands for the product $1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$ (10%)

- 2. Let $A = \{a, b, c, d, e, f, g, h, i, j, k\}$, $\pi_1 = \{\{a, b, c, d\}, \{e, f, g\}, \{h, i\}, \{j, k\}\}, \pi_2 = \{\{a, b, c, h\}, \{d, i\}, \{e, f, j, k\}, \{g\}\}\}$ be two partitions on set A, find (a) $\pi 1 \cdot \pi 2$ and (b) $\pi 1 + \pi 2$. (10%)
- 3. From the integers of the set {1, 2, 3, ..., 400}, 201 of them are chosen arbitrarily. Show that, among the chosen numbers, there exist two such that one divides another. (10%)
- 4. Solve the recurrence relation: $f(n) = 4 f(n/2) + 2 n^2$, where n is a power of 2, and f(1) = 1. (10%)
- 5. Give an example to illustrate the Kruskal's algorithm for the minimum spanning tree. (10%)
- 6. Find a Confidence Interval for the μ_1 - μ_2 between two independent Normal distributions, if the σ_1 , σ_2 are known, but not necessarily equal. (10%)
- 7. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(0, \theta)$, show that $\sum X_i^2 / n$ is an unbiased estimator of θ . (20%)
- 8. In order to test at the α =0.05 significant level, the hypothesis H0: $\mu_1 = \mu_2 = \mu_3 = \mu_4$ against all possible alternative hypothesis. The sample sizes n=12.

(20%)

$$\sum \sum (X_{ij} - \overline{X})^2 = 80, \sum \sum (\overline{X}_i - \overline{X})^2 = 30$$

- (1) Please complete the following ANOVA table.
- (2) Determine whether we accept or reject H_0 ?

ANOVA Table

Source	Sum of Squares	Degree of	Mean	
		Freedom	Square	F-ratio
Treatment				
Error				
Total				

10. Giving n=11 observations of X and m=13 observations of Y, where X is N(μ_x , σ_x) and Y is N(μ_y , σ_y). Using the samples we obtain \overline{X} =1.03 , $S_x^2 = 0.24$, \overline{Y} =1.66 , $S_y^2 = 0.35$. (30%)

(1) Determine whether we accept or reject H_0 , When

$$H_0: \sigma_x^2 = \sigma_y^2 \quad H_1: \sigma_x^2 \neq \sigma_y^2$$

(2) Determine whether we accept or reject H_0 , When

$$H_0: \mu_x = \mu_y \quad H_1: \mu_x^2 < \mu_y^2$$

Reference data : $F_{0.95}(4,8) = 3.84$ $F_{0.95}(3,8) = 4.07$ $F_{0.95}(8,4) = 6.04$

$$F_{0.95}(8,3) = 8.85$$
 $F_{0.975}(10,12) = 3.37$ $F_{0.95}(10,12) = 2.75$

$$F_{0.975}(12,10) = 3.62$$
 $F_{0.95}(12,10) = 2.91$

$$t_{0.95}(22) = 1.717$$
 $t_{0.975}(22) = 2.074$ $t_{0.95}(23) = 1.714$

$$t_{0.975}(23) = 2.069$$